首页 >> 数据通信 >> 技术 >> 正文
 
大数据:高端安全检测的必由之路
http://www.cww.net.cn   2013年3月22日 11:17    

攻击的空间拓展变化包括持续性、蔓延性、传播性、渗透性等等,这一变化带来了安全模式的变化。求检对象隐藏在一个检测环境里,你采集过来进行检测计算的就是一个“被检测域”。你并不确切地知道你所要找的求检对象在哪里;于是检测者就希望“被检测域”尽可能地多覆盖求检对象,也就是要先扩大被检测域。被检测域变大了数据变多了,自然而然就变成了大数据问题。APT检测的出路可能就在大数据上。

APT有很大的空间不确定性。APT攻击走哪条路径不得而知,这就是信息不对称。防御者不知道攻击者从哪条路径来进行攻击,这是非常头疼的事情。但路是防御者的路,攻击者一定会通过防御者的路并靠近防御者,这就是防御者的优势。我们讲从空间角度来扩展被检测域,只要扩展更多的有效检测点,总能获得更高概率来截获攻击路径。更多的检测点、更多样的检测点、更多的数据,有利于解决APT问题。

APT有很大的时间不确定性。从时间角度来扩展被检测域,一个最简单直接的思维突破就是“存储”。说得更哲理一些,就是“记忆”。比如0-day问题,在没有特征的时候是难于检测到的。如果用一个网络录像机把所有的网络流全录下来,回过头来有了特征之后再检测,就可能发现攻击。有部电影名字叫《源代码》,其情节就是这个感觉。能够运用存储、运用记忆,形成一个时间机器,反复的回溯分析,这就是所谓的时间领域扩展。也就是用P来对抗APT中的P。

在信息安全检测的采集上,可以考虑给被检测域数据提前打标签,可以称之为轻干扰检测(轻破坏检测)。这可以使其具有某种全息性。这种干扰的不同处理,都是分析目的和过程对于前端采集技术链条施加影响。当然,这样很可能会进一步增加检测过程的复杂程度,也可能让检索变得更快捷。

新安全检测思路——四阶段检测

原先我们的安全检测都是三步检测——采集、分析、关联。而有了上面阐述的“大”思路,就变成了一个四步检测——扩大、浓缩、精确、场景。也就是将原先三步中的“采集”,变成了“扩大”——扩大被检测域以便更可能覆盖求检对象,以及“浓缩”——将海量被检测域数据中的有用数据浓缩下来。

浓缩、筛选、抽样等等可以理解为分析过程中的物理处理过程,所谓物理过程就是不改变被检测域数据的原有性质和形态,就如同炼铁过程中的选矿筛矿。比如渲染+半衰的处理算法:对于被检测域进行数据分块,对数据块的疑似程度进行打分渲染;然后再一个周期中对所有数据块进行半衰式处理;之后在进行打分再半衰,低于某一个阈值的数据块被丢弃。如此循环下去,留下的数据块集合就是被浓缩的被检测域。

精确检测就是借助传统的误用检测和异常检测来进一步分析。在这个阶段我常常将之比喻成分析过程的化学反应。这个时候提取出来的结论数据,其数据性质和形态都与被检测域的数据大大不同了。

场景步骤是对于检测结果的组合性分析。分析出的场景,可能来自对于精确检测的细微时间的组合,也可能来自于浓缩过程的提炼。

信息安全与大数据

大数据通常分为两类:一类是天然大数据问题,如基因计算、矿物勘测、空间探测等,这类是客观存在的大数据问题;还有一类是人参与的大数据问题,如购物数据,社交网络数据等,这一类可以通过检测目的对这些数据进行前端影响。安全属于第二类。

大数据相关思维和技术在安全中的应用非常值得期待。(启明星辰公司首席战略官潘柱廷)通信世界网

[1]  [2]  
关注通信世界网微信“cww-weixin”,赢TD手机!
来源:通信世界网   编 辑:高娟
分享到:
       收藏   打印  论坛   推荐给朋友
关键字搜索:大数据  安全检测  检测模式  信息安全  APT  检测  
猜你还喜欢的内容
文章评论查看评论()
昵称:  验证码:
 
相关新闻
即时新闻
通信技术
最新方案
企业黄页
会议活动