2、射频(RF)系统
RF无线LAN是目前最为流行的无线LAN,它按频段可划分为三类:
(1)非专用频段,或称为工业、科研、医学(ISM)频段
ISM频段,位于调频无线电和蜂窝电话使用的UHF频段高端。由于此频段频谱资源拥挤,可用的带宽较少,所以必须采用扩频技术。由于优越的抗干扰性和保密性,扩频技术已被广泛应用于军事通信,其概念就是把原始信息的带宽变换成带宽宽得多的类噪声信号,扩频信号辐射的功率是被扩展过10~1000倍原始信息的带宽,这样,功率谱密度也相应降低相同的量,扩频信号对窄带信号(FDMA,TDMA)用户的干扰也相应地降低相同的量,于是扩频信号对窄带用户的干扰就很小了。另一方面,扩频信号本身具有强的抗干扰能力,从这个意义上说,在窄带用户发射功率一定时,由于扩频处理增益的作用,扩频宽带信号可以与窄带信号共享相同的频带。也正鉴于此,美国联邦通信委员会(FCC)在1985年开放了三个频段:(902~928)MHz,(2.4~2.4835)GHz,(5.725~5.85)GHz,允许输出功率小于1W的扩频电台免许可证使用,这极大地促进了无线LAN的发展。
ISM频段中涉及的免许可证电台,可以采用直接序列扩频(DS)、跳频(HF),也可以是混合扩频(DS/HF)。DS技术常用于较高速率的数据通信,跳频系统从本质而言还是窄带传输过程,由于限制了调制带宽,通常速率较低,所以ISM频段的无线LAN大多采用DS扩频,FCC对其使用做了较严格的技术规定。但是,扩频技术并不能从根本上解决可用带宽问题,在无线传输中,数据编码的可用带宽越多,可达到的总的数据率就越高,尽管FCC开放了多个频段,但其总的可用带宽有限,理论上,处理增益l0dB的DS系统(QPSK)可得到的最大数据率分别为2.6Mbit/s(900MHz)和8.35Mbit/s(2.4GHz)。而目前工作于ISM频段中的无线LAN最高数据率均小于Mbit/s。
此外,在ISM频段中射频信号具有一定的透射和绕射能力,频率复用度较低,无法与最新的微蜂房技术结合,阻止了其应用范围的进一步扩大。
(2)专用频段:(18.825~18.875)GHz,(19.165~19.215)GHz
18GHz波段的主要优点是它具有一系列UHF和红外光波的混合频率特性,对于微蜂房网络应用很有吸引力,可获得较高的频率复用度,并且信号不必严格限于视距传输。18GHz波段具有足够高的频率,办公设施、生产设备对无线LAN的干扰很小,而且由于所需功率小,系统产生的微波能量也不会影响其它电子系统和设备的正常工作。
18GHz波段另一个主要优势在于具有足够的带宽,最近FCC划分的专用频段,可供10个10MHz信道使用,由于FCC的控制,也减少了潜在的系统同频干扰。专用频段一般选用频带利用率高的窄带调制方式(如TDMA),所以这一频段的无线LAN多使用时分双工(TDD)复用技术,使系统在进行高速数据传输的同时,还有足够的频率间隔保证数据的可靠性和完整性。
(3)毫米波段(mmW)
工作于毫米波段的无线LAN可提供更大的信息传输容量,但在技术上还未成熟。mmW与IR系统在物理层上有许多相似之处,在mmW系统中使用天线分集技术可明显提高抗阻塞和抗多径干扰能力,而IR系统由于波长短,使用天线分集时抗多径性能改善不大,只能减小阴影、阻塞和时延扩展带来的影响。此外,在mmW中采用静态路径补偿相对简单,并且mmWLAN具有很好的LPI/AJ特性,特别是在频率高端(58GHz左右)。在此频段中,由于大气氧产生分子谐振,比低频段正常传播损耗高约18dB/km,这种附加的衰落使信号明显具有明显的作用范围,区域外不易检测和窃听到LAN信号,也使外来干扰对LAN不会产生大的影响,因此,毫米波段无线LAN在军事领域中具有极好的发展前景。