单小区50%加扰场景,平均SINR大于13db,整体信道环境较好,平均下行吞吐量对比结果:模式间自适应>TM3=TM7>TM2。信道环境较差时,TM3和TM7的性能优劣取决于无线环境的恶劣程度,此处两者性能相当,但均优于TM2(SFBC)。相比于空扰场景,50%加扰场景模式间自适应中TM3(SDM)的采样点比例下降24%。
单小区50%加扰场景,业务信道受限,拉远距离:模式间自适应=TM7>TM2=TM3,差距不明显。TM3在400米之后,性能比TM7差,此时SINR为13.2db,TM7(Port5)对应的速率为17.7Mbps,对应的MCS为20,频谱效率介于CQI10和CQI11之间。
相比于空扰场景的540米分界点,由于50%加扰导致无线环境恶化,TM3与TM7性能分界点提前。原因分析:加扰导致TM3(SDM)的性能恶化较快,原先频谱效率较高的采样点,在空扰场景下,TM3(SDM)性能要好于TM7(Port5),但是50%加扰场景下,采用TM7(Port5)模式所获得的性能增益要高于用TM3(SDM)模式。
单小区100%加扰场景下,平均SINR 6db,无线环境整体较差,平均下行吞吐量对比结果:模式自适应>TM7>TM3=TM2。信道环境恶劣时,TM7(Port5)相对于TM2(SFBC)有明显的性能增益,因此TM7的性能要好于TM3和TM2,而TM3中由于包含了TM2(SFBC),所以TM3和TM2之间的差距较小。相比于50%加扰场景,100%加扰场景模式间自适应中TM3(SDM)的采样点比例更少,仅为50%,TM7(Port5)和TM2(SFBC)采样点增幅较大。
单小区100%加扰场景,业务信道受限,拉远距离:模式间自适应=TM7>TM2>TM3,差距不明显。TM3在300米之后,性能比TM7差,此时SINR为12db,TM7(Port5)对应的速率为16.7Mbps,对应的MCS为20.5,频谱效率为CQI11。
相比于50%加扰场景的400米分界点,由于100%加扰导致无线环境进一步恶化,TM3与TM7性能分界点更加提前。原因如50%加扰场景分析所述:信道环境恶劣时,采用TM7(Port5)模式所获得的性能增益要高于用TM3(SDM)模式。
不同站间距场景TM优化
场景优化主要目的是针对不同站间距场景,分析测试不同传输模式切换门限参数配置的性能,总结出参数配置应用建议。
优化场景主要选择密集城区(站间距200-300米)以及一般城区(站间距400-600米)两种站型的网络作为参数优化测试的区域。
TM2/3/7模式间自适应算法主要根据频谱效率为门限进行模式切换,频谱效率与业务信道(PDSCH)质量相关,信道质量指示(CQI)与频谱效率的对应关系协议已有规定,信道质量指示(CQI)和MCS的对应关系3GPP提案也有给出,各个厂家基本一致。模式切换直接根据终端侧的CQI触发。
目前,基站对于终端上报的CQI并不能完全信任,需要参考前几次CQI上报值和BLER进行统计修正。主要原因:第一,CQI并不直接表征业务信道(PDSCH)的信道质量,是根据接收到的公共参考信号信干比(CRS SINR)进行计算上报,在50%加扰情况下,公共参考信号质量近似业务信道质量。第二,协议没有定义公共参考信号信干比(CRS SINR)与信道质量指示(CQI)的对应关系,不同终端的算法实现不统一。第三,不同终端由于接收机灵敏度的不同,所测量得到的公共参考信号信干比(CRS SINR)也不完全相同。
不同的网络负荷会影响传输模式切换门限的频谱效率,进而影响传输模式的切换。实际商用网络中,网络的负荷是随着用户数的变化而变化的,而模式切换参数配置是静态的,不可能针对不同网络负荷,进行动态调整。考虑到50%加扰场景与真实网络拟合度较高,因此以50%加扰场景作为参数优化对象。
|