作 者:莱尔德科技股份有限公司 Peter Lindber
在实际应用中,除了受天线特性的影响,有两个外来的因素会影响G/T损失的数值:接收器的噪声指数和环境噪声温度Ta。接收器的噪声指数会增大天线的输出噪声Tout(因而降低G/T),环境噪声温度也会增大输出噪声。
噪声电平升高表示有源器件和电阻器产生的噪声影响减少了。除非是内置天线,其发射元件的增益很低,一般情况下,天线的实际温度支配着噪声温度。而且,噪声背景强表示,在低噪声的理想情况下,可以降低对发射元件的要求,并不会明显地降低G/T。这点可以定性地这样理解:效率高的天线接收到的信号大于效率低的天线接收到的信号,但是它接收到的噪声也比较大。因此,在天线输出端的信噪比并没有好一些。第二点是接收器的噪声指数NFrec也增加了天线输出的噪声,但是只要放大器的增益相当大(即Gamp>NFrec),它的影响就很小,与无源天线相比,这就提高了系统的性能(从噪声背景方面讲)。要注意的一点是,这两方面(也就是背景噪声和NFrec)的作用一般是分不开的。例如,背景噪声温度高时,接收器的噪声指数起的作用就小,反过来也是这样。
一般地讲,我们不知道发射元件的效率和放大器的增益分别是多大(至少不能通过测量得到,但可以通过模拟或者模型分析得到这些数据)。相反,G/T损失是直接通过测量天线的输出噪声总功率得到的,这时天线是放在一个特殊的环境中(例如在消声室中,Ta=T0),增益是用增益置换法借助一个增益已知的参照天线通过测量得到的。但是要小心。要通过标定把测量设备产生的噪声去掉,在测量时没有金属物体(同轴电缆线或者电源线)和它相连。由于这个原因,莱尔德科技公司研制了一种代替电缆线的系统,它利用了光纤的原理,连同一个用电池供电的前置放大器,这些在一起可以妥善地测定小天线的电气特性(见图1)。估计同轴电缆线引入的测量误差的设置如图2所示。图2中,在单极天线从基板上伸出来的长度不同的情况下,用同轴电缆线和光纤系统测量了它们的增益。可以看到,在长度为10mm左右(这是内置天线的实际长度)时,测量误差超过20dB。
图1 使用光纤系统、没有使用电缆线的测量装置
图2 在测量小天线时,金属电缆线引入的测量误差
最后,要注意人体对小天线在FM调频频带的增益的影响是正面的,尤其是使用者的身体与天线或者底板接触的情况下。这是因为,在100MHz左右,人体是效率相当好的天线,半波长是1.5m左右。图3给出了人体接触天线和没有接触天线时,接收天线的输出频谱。很明显,用手接触天线时,G/T提高了10~15dB。由于大多数使用者在听电话时和移动电话是靠得很近的,所以可以合理地假定,FM调频天线的实际性能优于它处在自由空间时的性能。
图3 人体对增益和信噪比的影响
ActivvTM有源天线的性能
图4说明有源天线ActivvTM的设计思想。发射元件是一匝的半环回路,发射元件的一端在底板的一侧接地,发射元件的另一端接到放大器上。也可以用多匝发射元件,它能够提高发射元件的电阻。不过在多数情况下,它起的作用不够大。回路的电感和放大器输入端(栅极和源极之间)上并联的电容产生谐振,这样做除了提高增益外,还增大了天线的等效阻抗的电阻部分(它也提高了稳定性),从而增强了噪声的匹配。前置放大器是共源极电路,使用现代的微波FET晶体管,减少了噪声。整个放大器在3V时消耗的电流是3mA,它的增益相当大,线性度也相当好。