实时评估
使用CDRs,EDRs和IPDRs进行大数据分析是一个好主意,这取决于企业正在努力完成的任务。大数据分析可以以两种方式制定决策:
实时决策
根据趋势及预测分析加强规划,以及服务和网络的优化
利用明细记录、以及其他结构化和非结构化数据源进行优化和规划是必要的。这些记录包括丰富的信息,帮助预测有用的趋势。除非辅以分组网络的实时信息,提供关于发生了什么的精确细节,否则这些信息将无法提供一个完整的视图。
不幸的是,详细的记录不能用于实时决策,因为其只是每5至15分钟的时间间隔进行收集。这个时间间隔与我们对什么是真正分组网络实时的理解不兼容。其需要不断收集,存储和分析真正的实时网络信息,进行决策。要理解网络正在发生什么,必须对所有相关的以太网帧与IP数据包进行实时审查。
通过以这种方式捕获和存储网络信息,我们不仅具备了能够分析使用实时信息的能力,同时也可以为我们提供一个了解在信息网络发生了什么事件的基础的详细可靠的方式,以补充其他大数据的活动的洞察。
RTBDA在电信行业的应用
实时数据采集层可以为决策制定提供可操作的、层出不穷的材料。无论是电信管理论坛和IP网络监控的服务质量智能支持(IPNQSIS)项目,以及欧洲Celtic-Plus计划的一部分,都曾研究过这个需求,作为提升各自客户体验管理的努力的一部分。这两个项目的结论是,探头和设备对于了解在网络中正在发生的事情的可靠,实时洞察是必要的。
典型地,探头数据采集器将数据传送到其他管理系统,而设备使用相同的技术,而且能够分析数据,并可以在本地存储信息。通常情况下,设备集中于一个特定的任务,比如性能监控,测试和测量,或安全性,并且往往被视为满足非常具体的要求。在另一方面,探头和设备可以作为大数据分析的实时数据源发挥更多的战术作用,并帮助实现RTBDA战略。下文中提供了一个这样的基础设施如何实现的三个步骤的视图。
实现部署
最初的步骤需要数据采集设备的部署。这里的一个关键因素是以太网帧和IP数据包必须被实时捕获,不管在什么情况下,以线速度且零数据包丢失。这种可见性证实了源源不断的可靠信息的收集。
每帧必须被赋予独特的时间间隔,以保证精确的时间表可以被建立,不仅涵盖本地的设备,同时还能跨多个设备。这些时间间隔精度必须是以纳秒为计量单位。例如,在10 Gbps的网络以太网帧只有67纳秒的时间间隔,时间间隔分辨率必须小于67纳秒。否则,两个以太网帧都会收到相同的时间间隔,使得其很难区分。在一个100 Gbps的网络,这段时间间隔将减少到6.7纳秒。
结合零数据包丢失捕捉纳秒级精度的实时数据,确保了我们能够掌握一致的,准确的数据分析信息流。
存储
其次,收集的信息应该实时被存储。几个设备提供捕捉的数据存储到磁盘,允许实时的数据可以直接存储到本地硬盘。另外,这些数据可以被转移到一个存储区域网络(SAN)或其他位置。捕获的数据可以被用来在网络上创建一个历史年表,以精确的细节记录发生了什么。其可能用来重现到底发生了什么事,当进行重现时,使用这些数据。
这段细节记录历史是数据分析的一个丰富的信息源。这种类型的数据可以为数据信息的使用和行为模式提供洞察。如果设备具有深度数据包检测(DPI)的功能,那么,使用服务,包括互联网服务,可以监视和分析时间,地点和设备类型使用方面的趋势。
|