这些信息能够促使政策改变,Dubrovskiy说:“现在有数百万美元的融资机会,如果捐助者可以让管理人员了解他们需要什么、钱花在什么地方,这会有助于对教育财政作预算,有助于教育资金的合理分配。”
联合国教科文组织发布的最新一份《全民教育全球监测报告》显示,全世界用于教育的宝贵经费正在被低质量教育所浪费,其损失金额高达每年1290亿美元。报告就此呼吁各国政府在投资教育时,要注重教师的数量与质量,确保把最好的老师配备给最需要的学生。
预测教学质量
Chula Vista、Calif.、Winston-Salem、N.C.以及其他城市的学校都在使用大数据工具,用于帮助学校聘请教师。该学区计划开展一个预测分析软件项目,来自Hanover研究所的Paragon K-12用大量历史数据研究教师个人能力以及学生成就,既有单个项目的研究,也有对两者关系的研究。Joel Sackett是Paragon K-12的管理者,他说公司与学校的合作使教师招聘过程得到优化,在聘请教师时,分析教师的信息来预测教师能否在教育事业上取得成功,哪一位教师是最优秀的。
例如,Sackett说:“系统考虑到教师的学位和专长,以及信仰、人生观、态度、经验开放性等因素。这并不会决定老师是否被聘用,但从中得出的数据会对聘用过程有一定的影响。”
Sackett强调,在招聘过程中,基于预测分析的得分不应该作为唯一标准,“我们是想为面试提供一个更加客观的决策依据”,在美国有好几个学校已经建立了研究试点。
数据分析完善教育体系
Tod R. Massa是弗吉尼亚州高等教育委员会政策研究和数据仓库的负责人,他告诉我们:当大数据应用到教育领域时,“一切皆有可能”,作为弗吉尼亚州纵向数据系统(Longitudinal Data System)的一部分,委员会目前正在挖掘所有公共和非营利大学的学生数据,追踪学生表现情况。
最初委员会用数据分析是为了做预算,或者是为招生、财政援助和学位奖励做报告。Massa说:“过去十年中,我们已开始着手完善教育体系,帮助学生取得成功。”
例如,2008年,委员会将获得佩尔助学金(Pell grant)以及其他形式财政援助学生的成功率与所有学生的成功率进行了比较。
没有太大差别,但如果我们没有进行这样的比较,我们就不会知道如何改进它。在接下来几个星期,我们还会调查一些其他因素对学生的影响,如家庭收入。
Massa告诉我们委员会正在做毕业生工资情况的统计报告,包括了过去20年的毕业生情况。通过和失业率与工资记录相关联,还可以预测毕业生未来的工资情况,“帮助学生了解毕业后收入和学生贷款的变动,使他们了解教育决策对经济的影响。”
数据可帮助教育部门负责人和决策者了解资金政策的影响,“我们的目标是创造一种环境——一切基于事实,而不是猜想或直觉。”
“让我们用数据推动教育体制的变革吧。”
|