作 者:刘博
为了节省传感器节点的能量,传感器网络采用网格状的分簇结构,如图4所示。簇内节点周期性地担任簇头节点。当该网络没有侦测事件发生时,只有簇头节点处于工作状态,普通节点则处于休眠状态。当移动目标进入网格时,簇头节点负责唤醒单元格中的其他节点。
2 面目标跟踪算法——对偶空间转换跟踪算法
传感器网络跟踪中,很多情况下需要跟踪面积较大的目标,例如森林火灾中火灾边缘的推进轨迹,台风的行进路线等。仅通过局部节点的协作无法侦测到完整的目标移动轨迹,为此有些学者提出使用对偶空间转换方法决定由哪些节点参与跟踪,以保证对目标移动轨迹的完整侦测。
初始二维空间的直线y=αx+β ,它由α和β两个参数唯一确定,其中α表示斜率,β表示截距。定义这条直线的两个参数在初始空间的对偶空间中用点(-α,β)表示。同样地,初始空间中的点(a,b)定义了对偶空间中的一条直线Φ=a θ+b 。这是一个一一映射关系,如图5所示。
假设将面积较大的目标看成一个半平面,则它的边界就是一条直线L:y=αx+β。对偶空间变换就是将每个传感器节点P1、P2、P3、P4映射为对偶空间中的一条直线p1、p2、p3、p4,将目标的边界映射为对偶空间中的一个点l(-α, β)。这样,在初始空间中无规律分布的传感器节点在对偶空间中便成为许多相交的直线,并将对偶空间划分为众多子区域,而跟踪目标的边界映射到对偶空间中是一个点,并处于某个子区域中,如图6所示。这个子区域对应的几条相交直线就是离目标最近的传感器节点,再通过到初始空间的逆变换确定此时需要的跟踪节点。
通过对偶跟踪的方法,跟踪问题转换为在对偶空间中寻找包括目标边界映射点的子区域。当目标移动时,映射点会进入其他子区域,这时需要唤醒新区域中的节点进行跟踪,而让原有区域中不再属于新区域的节点转入休眠状态。
3 跟踪目标需要考虑的问题
当前的目标跟踪算法主要是针对不同环境下的单个目标跟踪,如何以最低的能量代价高效地融合有效的信息是各种算法的核心问题。
3.1跟踪精度
在目前的无线传感器网络的目标跟踪常见算法中,目标的计算位置与实际位置间不可避免地存在误差。提高跟踪的精确度更有利于实际的应用以及实际的需要,但是并不意味着精度越高就越好。若要提高目标跟踪精确度,必然需要融合较多节点的数据,这就会带来较高的能量开销。实际中需根据对结果精确度的要求和能量消耗等各方面进行综合考虑。
3.2跟踪能量消耗
由于用无线传感器网络跟踪目标大都应用于实际环境,节点的能量消耗是一个非常关键的问题。因而要求传感器节点不但能储备能量(电池),还要根据实际情况现场蓄能(太阳能)。跟踪过程中选择合适的节点参与跟踪需要考虑该节点的通信能量消耗、感测能量消耗和计算能量消耗,其中通信能量消耗是最主要的部分[5]。在设计考虑跟踪算法时要综合平衡考虑这几种能量消耗,找到合适的比重,以满足较低的能量消耗,从而延长节点和网络的寿命。
3.3跟踪的可靠性
网络可靠性差对跟踪目标有很大影响,当前应用于目标跟踪方法主要有集中式和分布式。集中式方法要求所有网络节点在探测到目标后都要向汇聚节点发回探测结果,不但引入的通信开销大,而且计算开销也增加很多,这样网络的可靠性下降很快。分布式方法是一种较好的选择,但是也要充分考虑跟踪方法的鲁棒性,能适应环境的变化,以增强网络的可靠性。
4 结束语
无线传感器网络由于其灵活性、成本低、易于布置等特性,在目标探测跟踪领域会有广泛的应用前景。传感器网络目标跟踪涉及目标检测、定位、运动轨迹预测、预警等重要问题。在研究过程中需综合传感器网络的自治性、低存储和计算能力、数据传送的鲁棒性、通信延迟、可靠性等特点深入思考,并要在节省能耗、增大测量精度、延长生存期等性能指标的提高上进行更深入的研究。
5 参考文献
[1]LiuJ,Cheung P, Zhao F, Guibas L. A dual-space approach to tracking and sensor management in wireless sensor networks. Palo Alto Research Center Technical Report P2002-10077, March, 2002. Also in: Proc 1st ACM Int’1 Workshop on Wireless Sensor Network and Applications, Atlanta, GA. 2003. 131-139.
[2]MechitovK,Sundresh S, Kwon Y, Agha G. Cooperative tracking with binary-detection sensor networks. In: Proc 1st Int’1 Conf on Embedded Networked Sensor Systems (SenSys’03), Los Angeles, CA, November 5-7, 2003.
[3]ZhaoF,Shin J, Reich J. Information-driven dynamic sensor collaboration for tracking applications. IEEE Signal Processing Magazine, March 2002.
[4]ZhangWS, Cao G H. DCTC: Dynamic convey tree-based collaboration for target tracking in sensor networks. IEEE Transactions on Wireless Communication, 2004, 3(5).
[5]PattemS,Poduri S, Krishnamachari B. Energy-quality tradeoffs for target tracking in wireless sensor networks. In: Proc 2nd Workshop on Information Processing in Sensor Networks (IPSN 2003), April 2003.
作者简介:
刘博,南京邮电大学通信与信息工程学院在读硕士研究生,本科毕业于南京邮电大学通信与信息工程学院。主要研究方向为无线传感器网络。