探索信号损耗情况
图3是使用双信道VSA测量一对仿真矩阵B波形得到的结果。在本例中,可以看到使用与不使用矩阵解码器对发射机信道间巨大串扰的影响。左图是一部分解调IQ星座图,其中放大了一个导频和一个数据符号点以显示细节。在矩阵解码器关闭时,如左上图所示,由于其他发射信道会以-29dB的相对电平耦合进这个测量中,因此数据星座图中会有一个扩频。这种高度的串扰将会导致2.9%的相对星座图误差(RCE)。仅这种串扰误差已经足以使RCT达不到WiMAXWave 2波形的要求。本图的右上角还显示了相关的误差矢量频谱:OFDM误差-子载波频率关系图。本测量图是对系统中的定时误差进行故障诊断的绝佳工具,下一实例也将使用此图。
图3下半部的图形为启用矩阵解码器时的测量结果。矩阵解码器可以使用四个(在2x2MIMO中)信道估算来抵消串扰效应。在矩阵解码器抵消串扰之后,RCE得以改善到小于0.05%,误差矢量频率和数据星座图均可反应出这种差异。注意,该导频的星座图点并不会受到串扰或矩阵解码器的影响。导频不会在时间和频率上重叠,这样导频星座图点就不会扩散,导频就能用来测量两个发射信道之间的串扰电平。
尽管在RCT试中没有使用,但矩阵解码器仍是一个出色的故障诊断工具,能够测量并去除串扰(串扰可能掩盖其他信号减损)。例如,图4所示矩阵解码器是如何抵消串扰以揭示系统中出现的符号定时误差。此前,上图为具有29dB串扰电平的信号的星座图和误差矢量频谱。在没有使用矩阵解码器之前,误差频谱主要由串扰决定,这使其很难看到波形中的定时误差。在启用矩阵解码器时,测量中的串扰得以抵消,并能轻松观察到定时误差。在右下端的测量中,误差频谱显示出我们熟悉的“V”型,那是符号定时误差的特征 [参考文献4]。
信道频率响应测量
均衡器和MIMO信道响应是表征矩阵A和矩阵B波形的另外两个有用的诊断工具。这些响应的幅度和形状可在解调之前使用户深入理解所接收波形的质量。例如众所周知,MIMO系统在路径众多的环境中工作时,信道系数之间的相关性较低,从而接收机一端能够更好地还原数据。反之,当信道系数之间的相关性较高时,系统性能就会迅速降低。图5是两个不同MIMO信道测得信道系数的幅度,一个信道的系数相关性较高(左),另一个信道的系数相关性较低(右)。这两个测量均启用了矩阵解码器。在高相关性实例中,这一对系数具有相同的复杂频率响应,系统性能可能会降低。如下图中的插图所示,测得的64-QAM星座图显示出高度的信号失真。作为对比,右上角的测量显示的是具有较低相关性的测得信道系数。在本例中,这些系数具有不同的频率响应,从而导致了数据恢复过程的改进,这一点如图中右下角的测量星座图所示。
条件数
另一个非常有效的故障诊断工具是“MIMO条件数”,它是通过对信道矩阵[H]进行特征值分解,获得每个子载波的最大奇数值与最小奇数值之比计算出来的。它能够测量接收机中不合格的矩阵是什么样的。该比值常用对数标尺来显示,状态良好的矩阵的奇数值的理想比值为1dB或0dB。作为综合指南,当信号的条件数大于其信噪比时,矩阵解码器将不能有效地区分信号,解调性能将会很差。这一点可在图5中左下角的条件数响应中轻松看出。在这种情况下,条件数会接近或大于20dB,而且解调后的星座图将会很差。与之相比,右图所示的条件数通常低于10dB,相关的星座图也有显著改善。
无论WiMAXWave2系统是使用矩阵A配置还是使用矩阵B配置,通过充分利用无线环境中的大量多路径特性,都能极大地提升系统性能。在这些系统的设计、故障诊断和优化过程中,多种双信道测量可为这些系统的操作和性能提供必要的深入分析。
参考文献
[1]WiMAXSystemEvaluation Methodology,2.1 版,2008 年 7 月 7 日。
[2]安捷伦在线研讨会,“WiMAXWave2 Testing - MIMO & STC”,2008 年 1 月 17 日。
[3]“MatrixAand B re-measured; Single channel measurements for WiMAX Wave 2 reduce the need for multi-channel analysis”,WiMAX 日报,2008 年6 月 18 日。
[4]TestingandTroubleshooting Digital RF Communications Transmitter Designs,安捷伦应用指南 1313,5968-3578E。