早在上世纪90年代开始,大量的企业就开始通过应用分析法来提高产品质量和生产的效率,其核心是实现生产与服务的需求相匹配。今天的大数据分析手段也是如出一辙。大数据不仅能够使生产商制造产品的时间缩短20%-50%,还能够在产品批量生产前通过模拟,检验防止产品缺陷,减少产品开发周期过程中不必要的环节等。
质量管理强调产品质量要符合消费者预期,这个预期包括预算,功能,外观等等。这是大数据分析法提升质量管理环节的首要收益。通过对内源与外源数据的实时采集和分析,企业能够准确地了解消费者需求以及购买行为,明确产品特征,运用高级分析法准确地指导生产,运输与采购以提升产品或服务的质量。
大数据的实时性与实效性,給企业的生产质量管理提供了质的飞跃。传统质量管理主要是通过静态的,历史的,沉淀的数据,通过检查表,散点图,控制图等检测手段,来发现生产过程的质量问题大数据通过物联网,通过产品上安装传感器,标签等手段,实时监测采集数据,认知产品性能,实时提高质量。
7、劳动力的数字化
劳动力是除了产品成本外,企业最重视的开支。而且,问题的复杂程度也是最大的。 问题除了员工本身之外,有很大一部分问题与管理水平低下有关,管理者不因只强调员工的问题,而忽略自身和机制的问题,特别是在零售,分销,加工等这些劳动密集型企业,劳动力问题尤为突现。
任何一个组织,应该通过有效的科技信息手段,快速建立认知,基于组织的行为和文化标准,提高一致性和我们从雇佣的质量,继任计划,以及到员工的成长进程的全人才生命周期的管理。通过大数据方式,找到进行员工调度的最佳模式,缩短管理时间,实现技能与岗位的周期匹配,劳动力效率最优化。让劳动力的管理成为可预测的,且基于分析学的方法来实现人才资源的管理。这样的方法一是客观,二是从大数据统计的角度将员工的绩效指标和行为特征连接了起来,为每个企业创造了一个“最适合”的劳动力模式。
大数据在帮助企业生产实现需求预测的精确性,对提高员工调度效率起这非常重要的作用,这又进一步说明了在销售环节获取的数据是如何影响生产环节决策的。由此給组织带来提供卓越的客户体验,更高的生产率,更高的销售增长,和更广泛的利润空间。这一切都源自于100%数据驱动的,尽可能避免主观判断和推测。
8、资产智能管理
物联网(IOT)的发展以及感应技术的兴起,为我们开创了一个能紧密连接物理空间许多事物的信息网络。随着大数据分析技术的发展,特别是预测分析的发展,结合互联网云化的广泛应用,物理空间与虚拟信息空间的形成与同步,离不开设备的自我意识和自主维修机械系统。
智能设备的未来,一定是能够自主评估健康状况和退化情况并主动预防潜在性能故障,并且做出维修决策,以避免潜在故障的系统。要实现健康条件评估,就需要利用数据驱动算法分析从机械设备及其周边环境中的数据。实时设备条件信息可反馈至机械控制器以实现自适应控制,同时信息也会反馈至设备管理人员方便及时维修。操作员可根据每台设备的健康条件平衡和调节每台设备工作量和工作压力,从而最大程度优化生产和设备性能,实现主动检修计划的智能决策。