作 者:网络与通信 杨松 曹型兵
由于天线有发射和接收两种工作状态,所以智能天线包括智能发射和智能接收两部分,它们的工作原理基本相同。智能接受时,自适应天线阵能在干扰方向未知的情况下对阵列中各个阵元的信号输入进行自适应的加权调整,使阵列天线方向图的零点对准干扰方向调零,以减小甚至抵消干扰信号,从而达到从混合的接收信号中解调出期望得到的信号的目的。即使在干扰和信号同频率的情况下,也能成功地抑制干扰。如天线的阵元数增加,还可增加零点数来抑制不同方向上的几个干扰源,实际效果可达25dB~30dB以上。智能天线以多个高增益的动态窄波束分别跟踪多个移动目标,同时抑制来自窄波束以外的干扰和噪声,使系统处于最佳状态。智能发射时,根据从接收信号中获取的UE信号方位图,自适应地调整每个辐射阵元输出的幅度和相位,使得他们的输出在空间叠加,产生指向UE的赋形波束。
5.2智能天线在TD-SCDMA中的应用
WCDMA和CDMA2000都希望能在系统中使用智能天线技术,但由于其算法复杂度高,目前在IMT-2000家族中,只有TD-SCDMA技术明确表示将在基站端使用智能天线。对于系统基站而言,智能天线技术在3G中的应用主要体现在两个方面,即基站的收和发,具体而言就是上行收与下行发。智能天线的上行收技术研究较早,因此也较为成熟。上行收主要包含全自适应方式和基于预波束的波束切换方式。在自适应方式中,可根据一定的自适应算法对空、时域处理的各组权值系数进行调整,并与当前传输环境进行最大限度的匹配,从而实现任意指向波束的自适应接收。全自适应方式在理论研究中具有很大的实用价值,但在实际工程中,由于全自适应算法的计算量大等因素而很不实用。在工程设计时,更感兴趣的是基于预波束的波束切换方式。因为波束切换中的各权值系数只能从预先计算好的几组中挑选,因此计算量、收敛速度等方面较全自适应方式有优势。然而在这种方式下由于智能天线的工作模式只能从预先设计好的几个波束中选择,因而它不能完全实现自适应性的任意指向,在理论上并不是最优的。实现基站智能天线下行发射难度相对较大,主要因为智能天线在设计波束时很难准确获知下行信道的特征信息。目前在这方面主要有下述两种方案。
a)利用类似第二代移动通信的IS-95中的上行功率控制技术形成闭环反馈测试结构形式,也就是说基站通过正向链路周期性地向移动台发射训练序列,而移动台通过反向链路反馈信号,从而估计最佳正向链路加权系数。
b)利用上行信道中提取的参数估计下行信道。这种方法实际上就是智能天线依靠从上行链路中提取的参数来对下行波束赋形,对于FDD方式,由于上下行频率间隔相差较大,衰落特性完全独立因而不能使用。但对于TDD方式,上下行时隙工作于相同频段,只要上下行的帧长较短完全可以实现信道特性在这段转换时间内保持恒定。TD-SCDMA系统将一个10ms的帧分裂成两个5ms的子帧,缩短了上、下行的转换时间。
TD-SCDMA系统综合了FDMA、TDMA、CDMA以及TDD模式中联合检测与智能天线等先进技术。其基本技术特征之一是在TDD模式下,采用周期性重复的时间帧传输基本的TDMA突发脉冲,通过周期性地切换传输方向,在同一载波上交替地进行上下行链路传输,在保证高频谱效率的同时,又获得了经济效益。
6、结束语
智能天线技术的发展日益加快,应用前景日益广阔是不争的事实。在未来3G网络建设引入智能天线技术,将增加系统在空间上的分辨能力,从更高层次上提高系统对于无线频谱的利用率,提高网络容量。但是智能天线也有一些本身无法解决的问题,主要是当时延超过码片宽度时产生的多径干扰和高速移动时产生的多普勒效应造成的信道恶化。因此,在多径干扰严重的高速移动的情况下,智能天线必须和其他抗干扰的数字信号处理技术同时使用,才可能达到最佳效果。