作 者:网络与通信 杨松 曹型兵
1、智能天线的提出
智能天线是在自适应滤波和阵列信号处理技术的基础上发展起来的,是通信系统中能通过调整接收或发射特性来增强天线性能的一种天线。它利用信号传输的空间特性,从空间位置及入射角度上区分所需信号与干扰信号,从而控制天线阵的方向图,达到增强所需信号、抑制干扰信号的目的;同时它还能根据所需信号和干扰信号位置及入射角度的变化,自动调整天线阵的方向图,实现智能跟踪环境变化和用户移动的目的,达到最佳收发信号,实现动态“空间滤波”的效果。采用智能天线的目的主要有以下3点:a)通过提供最佳增益来增强接收信号。b)通过控制天线零点来抑制干扰。c)利用空间信息增大信道容量。
最早的智能天线是出现在20世纪50年代的旁瓣对消天线,这种天线包含一个用于接收有用信号的高增益天线和一个或几个用于抑制旁瓣的低增益、宽波束天线。将几个这样的环路组合成阵列天线,就构成自适应天线。随着阵列信号处理技术的发展,与智能天线有关的术语也越来越多,如智能天线(intelligent antenna)、相控阵(phased arrays)、空分多址(SDMA)、空间处理(spatial processing)、数字波束形成(digital beam forming)、自适应天线系统(adaptive antenna system)等,反映了智能天线系统技术的多个不同的方面。但总的来说,智能天线主要包含两类:开关波束系统和自适应阵列系统。两者中,只有自适应阵列系统能够在为有用信号提供最佳增益的同时,识别、跟踪和最小化干扰信号。
2、智能天线的发展现状
早期智能天线的研究主要集中在军事领域,尤其是雷达领域,目的是在复杂的电磁环境中有效地识别和跟踪目标。随后,智能天线在信道扩容和提高通信质量等方面具备的独特优势吸引了众多的专家学者,日本、欧洲和美国的许多研究机构都相继开展了针对智能天线的众多研究计划,这也为智能天线的迅速发展奠定了基础。
2.1日本的智能天线发展
日本最早开始智能天线的研究是在20世纪70年代。到1987年,研究人员已经指出基于最小均方误差(MMSE)准则的自适应天线能够减小多径衰落,因而可以用于高速移动通信应用中。自此,日本学者展开了大量的针对移动通信环境的智能天线研究,包括自适应处理算法、数字波束形成方案、WCDMA中的多址干扰抑制方法,以及基站和移动终端上分别适用的智能天线类型等。其中,较早的有日本邮政电信部通信研究实验室的智能天线系统和NTT-DoCoMo公司研制的用于3G的UMTS W-CDMA体制的智能天线实验系统。前者工作于1.5 GHz,针对TDMA方式采用GMSK调制,数码率可达256 kbps。系统利用4阵元天线进行多径时延对消以消除多径衰落,权值更新采用恒模(CMA)算法在东京进行的实验表明:自适应天线技术在无线高速数据传输和存在选择衰落的情况下仍能很好地对消多径时延信号。后者则采用2D-RAKE接收机结合MMSE自适应波束形成算法进行处理。实验系统有3个小区基站用以评估切换和其他的网络功能。实验结果表明,就平均误码率(BER)而言,智能天线比空间分集有明显改善。
此外,日本ATR光电通信研究所也研制了基于波束空间处理方式的多波束智能天线。天线阵元布局为间距半波长的16阵元平面方阵,射频工作频率是1.545GHz。阵元组件接收信号在经过低噪声放大、下变频和模数变换后,进行快速傅氏变换(FFT)处理,形成正交波束后分别采用恒模(CMA)算法或最大比值合并分集(MRC)算法。野外移动试验确认了采用恒模算法的多波束天线功能。理论分析及实验证明使用最大比值合并算法可以提高多波束天线在波束交叉部分的增益。在此基础上,ATR的研究人员提出了基于智能天线的软件天线概念:根据用户所处环境不同,影响系统性能的主要因素(如噪声、同信道干扰或符号间干扰)也不同,利用软件方法实现不同环境应用不同算法。比如当噪声是主要因素时,则使用多波束MRC算法,而当同信道干扰是主要因素时则使用多波束CMA算法,以此提供算法分集,利用FPGA实现实时天线配景,完成智能处理。