|
基于FPGA的智能误码测试仪
http://www.cww.net.cn 2009年12月16日 09:56 电子电路图网
在m序列中,连0、连1的情况很多,为了防止鉴相器在此期间误操作,设计了判别及控制电路,在信号出现连0或连1时使鉴相器不操作,让本地N计数器始终以N为计数值计数。采用这种同步方法后,不仅误码仪同步适应范围加宽,而且本地恢复时钟的精度也仅与全局时钟有关,而与发端信号速率无关。实际测试证实,在信号存在50个连0时,位同步模块仍能正常工作。 2.2序列同步模块 前面已经提到,m序列是周期序列,测试序列和检验序列的比较应以周期内的同一位置作为起点。因此,在序列比较前应首先进行序列同步。常见的序列同步方法有:滑动相关捕捉法、序列相关捕捉法、SAW器件捕捉法等6。这些方法都是利用序列的相关特性进行同步的,存在着结构复杂、同步时间较长等缺陷,不适合用FPGA实现。为了使误码仪能在不知道发送端序列发生器初始状态的情况下进行快速盲同步,在实际设计中采用了开关门m序列同步算法7。其原理框图如图4所示。 在初始状态下,开关K置于B位置,发端送来的测试序列在完成位同步后移位送入寄存器an-1…a0。存满后,开关K置于A位置。寄存器an-1…a0和模二加法器在本地时钟的驱动下产生出检验序列。由于m序列的下一存储器状态组合仅取决于当前的状态组合,因此,如果最初的9个接收码元是正确的,则随后产生的所有码元都是与测试序列相同和同步的。之后,测试序列与检验序列需要进行一次相关比较,如在若干个(如5个)码元周期内其相关值超过阈值,则可认为两序列同步,否则需要重新进行同步操作。 采用这一方法后,序列同步时间大大缩短,有利于进行快速测试。 2.3单片机软件的设计 单片机在误码仪中承担着控制核心的作用。其实际工作流程如图5所示。 仪器加电复位后单片机首先配置FPGA。配置成功后,单片机等待用户的键盘指令并确定测试模式和速率。根据用户的选择,单片机将及时地调整FPGA内各模块的工作参数。用户选择测试开始后,单片机首先检测FPGA中位同步模块是否工作正常。根据位同步模块的工作情况,单片机可向用户发出无信号及失步告警,提示用户检查线路。位同步成功后,单片机每隔1秒读取一次误码数据并进行分析计算。若误码率大于0.5,则认为序列同步失败,单片机要求序列同步模块重新进行同步操作。若连续3秒同步无效,则认为位同步失效,单片机将发出失步告警,并提醒用户发送端速率可能已改变或信道干扰严重。在此期间,误码率的显示和存储都不受影响。 在发生误码事件后,单片机会及时地通过I2C总线将其存储于外部E2PROM中,并及时上传PC机。用户可通过LCD实时地了解误码测试情况,并在测试中随时查询存储器中的误码信息。 3误码仪的扩展和再升级 智能误码仪的设计和开发面向的是多种传输信道。为了适应不同信道的传输方式,设计了大量的外部接口配件,每一种配件提供了不同的码型变换(HDB3等)和信号调制解调方式(FSK等)。用户可以根据实际测试需要进行选择。采用这种灵活的配置方式后,用户不仅降低了使用成本,而且提高了测试的针对性。 为了提高该误码仪的再升级和可移植能力,选用了单片机和FPGA作为核心器件。其中FPGA采用模块化的设计思想,其中的成熟模块可被其它基于FPGA的系统或模块调用。对于那些需要随时测试信道误码而又不希望另外购买误码仪的用户来说,将已设计好的测试模块移植到自己的系统中将是一个不错的选择。同时,FPGA的正常运行需要对其进行正确的配置,不同的配置文件将使FPGA产生不同的工作效能。用户通过下载最新的配置文件可以方便地实现系统的软升级。 近几年来,“虚拟仪器”技术逐渐成熟,让PC机直接配置或部分控制FPGA不仅可以减轻单片机的工作负担,而且可以通过修改PC机上的软件实现对专用信道测试功能的优化。本文所介绍的误码仪在开发时已注意在这方面留下足够的拓展空间,只要开发出更为复杂的PC机客户端服务程序,无需改动现有的设备就能实现在PC机上进行误码测试操作。 本文所介绍的智能误码仪采用大规模可编程集成电路作为核心,具有体积小巧、成本低廉、性能优异、可拓展能力强的特点。尤其是FPGA中的自适应位同步模块和快速序列同步模块设计独特、功能完善,具有较高的应用价值。随着该误码仪外部设备的不断完善和改进,它将向更多的专业用户提供更全面更优质的支持与服务。
[1] [2] 编 辑:石美君
|
每日新闻排行 企业黄页 会议活动 |