作 者:王勇 刘光毅 张建华
此外,因为OFDMA已成为下行链路的主流方案,上行链路如也采用OFDMA,LTE的上下行链路将具有最大的一致性,可以简化终端的设计。
一个分配了M个子载波的用户的传输信号可表示为:D =[d 0,d 1……d M-1]T,其中,T代表矩阵转置,di是调制信号。
经过快速傅立叶反变换(IFFT)调制后,信号向量S =F N* T N,M D,其中TN,M代表子载波分配的映射矩阵,其元素是表达子载波的分布式或者集中式分配。F*N是N点IFFT矩阵,*代表共轭转置,并且FN=[f 1T,f 2T……f NT]T,
经过衰落信道和快速傅立叶变换(FFT)信号处理后,频域的接收信号可以作如下表达:R=HTN,M D+n,其中H=diag(Hk),Hk是第k个子载波上的频域响应;n是高斯噪声向量;R=[r(0),r (1) ……r (N-1)]T,r (k)是第k个子载波上的接收信号。
由于OFDM的时域信号是若干平行随机信号之和,因而容易导致高PAPR。基站端的功率限制相对较弱,并且可以采用较为昂贵的功率放大器,所以在下行链路中,高PAPR不会带来太大的问题。然而,在上行链路中,由于用户终端的功率放大器要求低成本,并且电池的容量有限,因而高PAPR会将降低UE的功率利用率,减小上行的有效覆盖。为避免OFDM的上述缺点,必须降低PAPR。
降低OFDM的PAPR的技术有很多,比如选择性映射、削波和滤波等等。文献[6]中证明了通过削波和滤波,可以将PAPR降低到6 dB以下时,同时对OFDM的性能影响很小,而且带来的复杂度增加也是可以接受的。因此,本文将主要研究不同多址方案的链路级性能的比较。
1.2DFT-SOFDM的基本原理
结合动态带宽分配的单载波传输技术已成为LTE上行链路的主要候选多址方案[1],其主要优势是具有较低的PAPR。与多载波信号相比,单载波技术可以降低对终端功放的要求,提高功率的利用率。
DFT-S OFDM可以认为是SC-FDMA的频域产生方式,是OFDM在IFFT调制前进行了基于傅立叶变换的预编码。不加循环前缀的传输信号可以表达为:S=FN* TN,M FM D,其中FM是M点FFT。
DFT-S OFDM也具有两种模式:集中式和分布式。图2是集中式DFT-S OFDM的示例,其中m 1……m M表示M个不同的调制器传输的比特数,而f 1……f M表示N点IFFT的M路输入。在发送端,先对块长为M的调制信号进行M点FFT信号处理,再根据子载波映射模式将M点FFT的输出信号映射到N个子载波上,经过IFFT将信号转变为时域信号之前,可以进行频域脉冲成型。与时域脉冲成型类似,频谱成型可以在频谱的利用率和PAPR间折衷,如果滚降系数大于0,则使频谱扩张,这与时域脉冲成型要求的过采样率相对应。
接收端为图2的逆过程。在去保护间隔和N点FFT处理以后,频域的接收信号为:R=HTN,M FM D +n,此时DFT-S OFDM也能在频域进行均衡。
2 系统参数设定和均衡器
在3GPP LTE的提案中,很多仿真结果都是在3GPP步行环境B类信道(PB)3 km/h或者车载环境A类信道(VA)120 km/h的情况下。不论是OFDMA还是DFT-S OFDM,在经过这样的衰落信道后,其接收信号都将成为频率选择性信号。如果用户所占用的子载波上的信道不是常值的话,就需要频域均衡器来恢复信号。本文中采用迫零(ZF)均衡器。