作 者:湛浩星 孙长嵩 吴珊 李冬艳
为保证ZigBee网络的稳定和可靠性,在长型的巷道中将由数个ZigBee网络所覆盖,每个ZigBee网络覆盖一定的范围(具体覆盖的范围由现场状况决定,约每300m为一个ZigBee子网)。各个ZigBee网络之间可由两种方法进行区分:网络ID和频段(Channel)。
ZigBee网络拓扑结构如图3所示。网络分为井上和井下两个部分,井上部分是煤矿井下救援系统及其相关设备和网络,井下部分是无线传感器网络及其相关设备和网络。
3.4井下人员定位
井下人员定位的过程如下:井下人员佩带系统的ZigBee定位模块,此模块定时发出存在信息,由分布于巷道中的路由节点接收,并根据信号强度判断其位置。井下人员的位置相关信息井路由节点或若干路由节点跳传)传至接入节点,再由接入节点传入以太网,即通过基于ZigBee技术的无线自组网络传输到煤矿井下救援系统,从而达到实时判知人员位置的目的。
井下人员定位系统组成示意图如图4所示。其中的主要组成部件为:
①定位节点:定时发出存在信息,用于携带它的工作人员的定位。
②路由节点:接收定位节点发出的信息,并将此信息路由(跳传)至接入节点。
③接入节点:接受来自路由节点数据,并将其通过以太网络发送至监察系统。接入节点是一个ZigBee组织者,他通过一个以太网关与以太网相连。网关与ZigBee接入节点通过RS232串口进行通讯连接。
下面对图4中定位节点D1,D2和D3的路由路径分别加以说明,D、L、J分别表示定位节点、路由节点和接入节点。
从图4中可以看出D1同时处于L2和L3检测范围之内,但是由于D1被障碍物阻挡不能与L3通讯,而只能与L2通讯,因此其路由路径为:
D1→ L2→ Ll →Jl→以太网
D3同时处于L3和L4检测范围之内,但是由于D3被障碍物阻挡不能与L3通讯,而只能与L4通讯,因此其路由路径为:
D3→ L4→L5→ J2→以太网
D2同时处于L3和L4检测范围之内,并且D2没有被任何障碍物阻挡,因此能与L3和L4同时通讯,路由路径为:
D2→L4→L5→J2→以太网
D2→L3→L2→Ll→Jl→以太网
系统工作时,需要将定位节点附着在井下人员身上,将其位置信息通过ZigBee网络和以太网络送入煤矿井下救援系统,最后借助GIS技术将人员的位置信息在电子地图上实时的标出。在定位过程中,需要实现以下两个关键技术:
(1) ZigBee节点的标识:每个ZigBee节点都有64位的永久地址,作为其唯一性标识。可以将这个地址映射为对应用层有意义的名字,从而可对每个节点进行身份辩认。
(2)定位判定:移动中的定位节点可由一个ZigBee网络进入另一个ZigBee网络中,由接收到定位节点信号的路由节点决定其位置。位置判断的依据为两个无线信号参数:LQI (Link Quality Indicator)和SSI (Signal Strength Indicator),这两个值由路由节点在接收到定位节点的信号后得出。位置判断的精度取决于路由节点分布的密度,需要根据现场实际情况方可决定。
4结束语
本文提出了一种基于ZigBee技术的井下人员无线定位系统的开发和使用,该技术能够大大提高煤矿井下救援系统在救援过程中的积极作用,能为事故救援提供高可信的、重要的数据资料,减少事故发生的可能性,降低人员的伤亡。木系统目前已经在黑龙江省双鸭山矿业集团得到成功应用和推广,并取得良好的社会和经济效益。
然而,目前定位系统中定位节点只能起到地理定位作用,如果将瓦斯传感器、环境监测传感器等多种传感器和定位节点结合,将井下生产作业区的温湿度、氧含量、有毒有害气体含量、粉尘含量等多种环境参数通过无线网络传送到煤矿井下救援系统,实现实时监测,这对煤炭行业与其相关行业的平稳健康发展无疑有重要的意义。重视历史数据的收集与积累,对煤炭行业职业病典型的尘肺病)的有效防治提供支持,上述内容将在以后的工作中作进一步的研究。