首页 >> >> 大数据 >> 正文
变革时代下运营商大数据的驾驭之道
通信世界网
作者:孙琳 覃朗       2016年11月2日 14:56
大数据 爱立信

2、平台建设:底层统一平台协议,上层先烟囱建设再下沉能力。一方面,在数据收集存储以及信息整合的层面建设统一的平台,保证数据规范统一,解决数据的实时性问题,保证所有数据从产生、记录、存储到维护都有一个完整生命周期;另一方面,在应用层面可以先尝试在局部领域进行烟囱式的建设,及早对接业务的需求,通过小范围试错和迭代来形成Know How、沉淀经验,等到这些模式逐渐被实践验证和市场接受的情况下,便可考虑下沉为能力平台,并通过开放来承载更多的商业模式和变现途径。除此之外,运营商特别还要在基础设施和IT架构上,将大数据技术融入到自身已有的技术生态中。

3、数据开拓:以开放思维参与数据生态。运营商尽管在数据资源上具有其独特的价值,但并不意味着仅靠自身的数据就所向披靡。尤其是在跨行业的复合场景下,多个数据源的关联分析能产生出更大的价值。这就要求运营商还要整合更为广泛的外部数据源,包括其他行业、公司及政府机构。随着大数据创新的不断涌现,跨领域的数据共享需求会越来越大,这其中涉及到的数据所有权、定价和交易规则等问题都有可能逐渐地清晰。当然,运营商也没有必要坐等所有争议都得到解决再去尝试,可以在一定的原则和风控措施下,以开放的思维参与到整个数据生态。

4、产品形态:大数据能力是未来运营商向行业客户提供一揽子服务的重要组件。从现阶段国内案例看,最常见的大数据应用就是各类数据报告,但在国内的商业环境下,数据报告的变现能力和变现方式都太局限,很多数据图打着大数据的幌子,更多是做噱头和认知。对运营商而言,大数据的变现应与自身业务和能力相结合,将自身大数据能力与业务进行集成,提供能嵌入行业客户日常运营的一揽子服务。以国外运营商案例看,大多数运营商都会协助线下企业提供精准营销服务(例如:Verizon为菲尼克斯太阳队提供精准营销服务,帮助其提升赛季套票销量的35%;西班牙电信利用人群轨迹分析帮助莫里森超市提高了150%的客流量。),而在此过程中,运营商的价值不能只停留在通过大数据能力找到精准营销的对象上,而要结合运营商能力(例如定位、轨迹等),为使用方触点提供准确的激活判断,并将这些价值集成在一起形成解决方案或平台,持续地协助行业客户提升运营能力。

5、开放平台:开放平台是大数据变现商业模式的必要承载。从现阶段大数据产品形态看,其商业模式暂未超出互联网商业模式范畴。像现阶段的征信业务等一单单、非实时的应用一定不是未来大数据的主要业务形态,而随着大数据应用能力的提升,大数据计算模型的执行将在瞬间完成,并使数据应用方能快速根据结果产生判断和后续业务动作,如实时信用额度提升、带标签导流与推荐、营销规则触发等。而实现这些实时的应用,都需要开放的能力平台承载。同时,考虑到信息安全等因素,数据源直接向社会裸露无非会带来巨大风险,因此通过能力封装,将裸数据进行脱敏,并包装成API或SDK以供调用,以达到安全管理的目的。并可根据不同垂直行业需求,定制封装成不同的能力产品群,以聚合产业链上的开发能力,在其基础上,开拓更多的应用空间。

6、组织转型:先释放弹性,后加以重构。未来大数据分析和应用要逐渐融入到运营商的日常运作当中,整个过程每一个员工都要参与变革。但组织变革就好比高空换发动机,牵一发动全身,需要稳步推进。建议前期先在现有的组织架构上进行适配,划分不同部门的角色分工(比如在移动公司可以考虑由数业负责产品、政企负责销售),通过建立联合团队,吸纳内外部具备业务视角或技术能力的人才,在较为集中的时间内实现局部领域的攻关和突破。在职能上,大数据业务团队不能只作为能力提供者,而应该与客户管理部门一同直接面向企业需求,建立贯穿售前、售中、售后的引导支撑、方案制定和实施交付等全面能力;到后期,在业务体量和能力储备达到一定层次后,设立独立的事业部以及VP层级的首席架构师角色,推动公司大数据端到端变现能力的形成(包括数据理解、模型应用、场景适配、模式创新等)。另外,无论是跨部门合作还是独立事业部,在人才的引进、培养、考核和职业发展等方面都应该有相应的配套措施,同时建立起小步快跑、容忍试错的机制,为创新创造条件。通信世界网

[1]  [2]  
相关阅读
热门文章
蓝戈沙龙