作 者:中讯邮电咨询设计院技术研发部 唐艳超 王保利 王强铮
(1)阴影衰落储备
由于存在阴影衰落的影响,为了保证一定的覆盖概率,必须保留一定的阴影衰落裕量,其大小与阴影衰落标准方差和覆盖概率有关。在实际工程中,一般以75%的边缘覆盖概率为目标,它对应的区域覆盖概率为90%,标准差σ一般取值为5~12dB,宏蜂窝一般取8dB,因此这里σ取8dB,由此可以计算出阴影衰落储备为5.39dB。
(2)快衰落储备
快衰落储备是为功率控制预留的功率裕量,功率控制可以在一定程度上抵抗快衰落,因此需要给功控预留功率裕量。由于802.16d中没有闭环功控措施,只有简单的初始测距,802.16d又是固定接入,因而不需要预留快衰落储备。而在802.16e网络中,由于终端可以移动接入,而移动会带来一定的衰落,通过功控可以弥补这个衰落,因此需要给功控留一定的裕量,但是由于802.16e网络功控的频率比较低,所以不需要预留太多的快衰落储备,这里取2dB。
(3)干扰储备
与GSM系统类似,WiMAX网络存在小区间的邻频和同频干扰,干扰的大小与站距的大小、频率的规划、天线的朝向等因素有关,为了使小区内干扰严重的区域能正常通信,就要留一部分裕量。如果频率复用模式为1/3/1,上行预留干扰储备3dB,下行2dB;如果频率复用模式为1/3/3,干扰储备可以减小为0.2dB,但是这样会带来频谱效率降低的后果。
4.传播模型的选择
在3.5GHz频段,常用的传播模型有SUI模型、Cost-231Hata模型、ECC-33模型等。相关文献曾经对三种模型做过测试研究,得出以下结论:SUI模型所预测的中值路径损耗的误差最大,一般都过大地预测了中值路径损耗,该模型需要通过进一步的参数优化来适用于3.5GHz频段;Cost-231Hata模型也过大地预测了中值路径损耗,尤其当天线高度比较高时,随着终端天线高度的增加,该模型越来越不适用于3.5GHz频段。因此,这两个模型需要进一步地优化来适用于3.5GHz频段。而ECC-33模型则与测试结果保持了比较好的一致性,因此ECC-33模型可以用作3.5GHz频段的传播模型。但是由于ECC-33模型对于郊区和乡村地区没有修正因子,因而建议只作为一般市区环境的传播模型。在2.5GHz频段,通常采用Cost-231 Hata模型。本文就以Cost-231 Hata模型来预测覆盖半径,链路预算如表5。
表5链路预算
二、覆盖分析
1.IEEE802.16d覆盖分析
通过上一节的分析,我们可以看出802.16d下行链路的总增益(QPSK1/2)为152.7dB,如果不考虑储备,在视距传输的情况下,假设CPE天线高度为10m,基站天线高度40m,用ECC-33模型预测的小区半径为9.09km,如果考虑了9.6dB的储备,计算出来的小区半径为5.72km;对于非视距环境,考虑10dB的穿透损耗,系统允许的最大路径损耗为135.1dB,预测小区半径为2.99km。表6给出了不同调制编码方式下的小区半径预测情况。
上行链路的总增益(QPSK1/2,1/8子信道化)为152.7dB,如果不考虑储备和视距传输的情况,假设CPE天线高度为10m,基站天线高度40m,用ECC-33模型预测的小区半径为9.11km。如果考虑了10.6dB的储备,计算出来的小区半径为4.74km;对于非视距环境,考虑10dB的穿透损耗,系统允许的最大路径损耗为132.1dB,预测小区半径为2.44km。表7给出了不同调制编码方式下的小区半径预测情况。