首页 >> 视频通信 >> 技术 >> 正文
 
无线视频监控传输技术的研究
http://www.cww.net.cn   2009年12月23日 13:25    现代电子技术    
作 者:张源峰

    引言

    近年来,图像监视成为监视领域所应用的主要手段,以往的有线图像监视系统往往面临着需要铺设大量的地上、地下设备线路,成本高,施工周期长等诸多问题。随着计算机通信技术和网络技术的快速发展,无线网络技术已成为计算机网络中一个至关重要的组成部分。在这个背景下,图像传输无线化打破了传统同轴电缆和光纤图像监视受制于硬件连接的不利局面,具有更强的灵活性和方便性,基于无线网络的视频监视系统应运而生。无线视频传输技术的发展已对无线移动网络的架构和协议产生了深远的影响,但由于无线信道带宽资源有限,干扰因素多,而视频信号数据量大,实时性要求高等问题。因此如何在无线网络环境中高效地传输视频成为人们的研究热点。

    1无线视频传输技术的发展现状

    随着信息社会的发展,人们对安防监控的要求越来越高,除集中地党政机关、企事业单位外,如在海上、山地、矿井、地下室等复杂的环境而无法实现有线网络架设的地方。都需要实现安防视频监控,这就需要用到无线视频传输技术。

    目前,市场上无线视频传输技术大多采用GPRSCDMA技术。而GPRS传输带宽不足,传输视频每秒只有几帧,且出现应急事件时容易出现断点和无线接收的死角。CDMA传输同样存在这样的缺陷,其下行带宽是153kb/s,上行带宽是70~80kb/s,因而传输流畅的视频基本上不可能实现。由于图像只有几帧,以抓图的形式来传输,并且为小画面尺寸。显然,这样不能够满足视频监控系统的实时应用需求。对于微波(数字微波、扩频微波),无线局域网(WLAN,802.11(a.b,g))等技术的其他较高的无线传输方案,其实现视频编码以MPEG-2/4,H.264等为主。但它们大多都存在共同的问题,即只能做到通视传输、定向传输,并且难以支持移动传输,从而限制了在视频监控系统的应用,无线视频监控系统结构如图1所示。

    监控系统一般采用低传输帧率而保证传输的清晰度,因为只有MPEG-4的CIF以上的图像清晰度才可以满足调查取证的需要。因此,无线传输技术要在监控系统中得到充分的发挥绝对优势,应该满足:能在非可视和有阻挡的环境中应用;适于高速移动中无线传输实时图像;适于传输高带宽、高码流、高画质的音视频;有优异的抗干扰、抗衰落能力。实际中,无线视频实时传输主要有两个概念:一是移动中传输;二是宽带传输。因此,研制能够将频带很宽的高清晰度视频进行稳定的无限视频传输系统,数据传输机制优化是需要解决的关键问题之一,无限链路的带宽资源有限,这种局限性在海量视频传世中体现尤为明显。在此,针对无线视频传输系统中数据传输机制的容错性展开相应的研究,旨在解决无线视频传输中带宽资源有限和视频数据量大这一矛盾,充分利用视频信号的时空相关性来节省由于不必要的重传而带来的带宽资源浪费。通过利用带宽一失真代价函数的概念来评价无线视频传输系统。在此基础上进一步给出基于带宽一失真代价最小化准则的部分重传错误控制机制,进而提高带宽的利用率,并进行相应的实验分析。

    2无线视频传输机制分析与容错传输技术

    可靠信道上信号传输研究的目的是充分利用信道的带宽资源;而对于不可靠信道,传输中研究的重点则是充分利用带宽资源来实现可靠传输,即容错传输技术。这里讨论在无线信道上的视频传输机制,其主要的研究点是容错传输控制。容错传输控制技术根据其控制方式的不同可以分为三大类:即前向错误控制、基于反馈的ARQ和信源信道联合编码。前向错误控制(ForwardErrorControl,FEC)包括信道纠错编码技术、交织打包技术和优化的包调度机制等。基于反馈的ARQ技术包括利用多帧参考机制的参考帧选择(ReferencePicture Selection,RPS)机制、混合ARQ(Hybrid,HARQ)机制和基于ARQ的反馈错误跟踪技术。由于基于ARQ的容错传输控制技术具有优良的性能,所以在此重点介绍ARQ相关的传输控制技术,并讨论现有视频容错传输机制存在的不足。

    前向错误控制采用前向纠错编码的方式来克服信道错误。在信道出错概率波动比较剧烈的情况下(如现有的移动信道),为了获得一定的传输质量,前向纠错编码必须根据当前估计的最差情况来增加冗余校验比特,这会导致带宽资源的浪费。对带宽资源本来就有限的无线信道而言,显然是不能满足要求的。为此,考虑把ARQ技术和前向错误控制结合起来,称为HARQ技术。HARQ分为两类:I类HARQ中,发送端的前向编码要具有一定的纠错能力,当接收端发现错误后,首先利用前向纠错编码来纠正错误。如果错误被纠正,则向发送端传送一个当前包接收成功的反馈信息(ACK),反之则发送接收失败消息(NACK)。发送端如果收到ACK,则继续发送下一个数据包,否则,则重发出错的数据包。由此可见I类ARQ需要较强的前向纠错编码,在错误率较低的应用场合会导致带宽资源的浪费,但在错误率高的环境下能够获得比其他类型ARQ机制更好的吞吐效率。Ⅱ类ARQ中只要求前向纠错编码具有检错能力即可,根据关于信道编码纠错能力的理论可知,这可以起到节约带宽的作用。当接收端发现错误后,发送重传请求;发送端只传送出错数据对应的具有纠错能力的校验码。当接收端收到后,如果仍然不能纠正错误,则继续发送重传请求,发送端可以选择重传整体出错数据和校验码,也可以选择发送更强纠错能力的校验码,具体因控制策略不同可有所调整。鉴于无线信道错误率高,具有反馈信道的无线传输通常采用HARQ-I。图2显示了采用HARQ-I的无线视频传输系统,图中虚线框代表了传输中错误控制的流程。根据HARQ-I的设计原理,接收端发现错误后,首先进行前向错误纠正(图中第一层错误屏障),如果不能纠正且当前系统满足时延限制,则发送ACK请求来让发送端重传出错部分的数据(第二层错误屏障)。这样的重传可以重复到接收端收到正确的数据或者重传延迟超出系统时延限制为止。如果重传结束后仍然不能得到正确的数据包,在接收端就会用错误隐藏技术来进行错误恢复(第三层错误屏障)。可以看出,这种机制的基本思想是出错后尽量使用ARQ技术来恢复错误,所以这里将其命名为“尽力而为”ARQ机制(BestEffortARQ,BEA,RQ)。

    由于视频信号具有较强的时空相关性,而且编码端并不能完全去除这种相关性,使得解码端能够利用这些残留的相关来恢复一定质量的视频。恢复的质量还和被恢复部分的纹理以及运动密切相关,一般而言,对纹理比较平缓和运动比较单一的部分,恢复效果要好于其他情况。在这种情况下,如果利用BEARQ来重传这部分视频,显然会造成带宽上的浪费。

    为了克服这种带宽上的浪费,在实际应用中,由于信道的错误率和重传次数有密切的关系,而每次重传都要耗费一定带宽,所以成功传输一个数据包需要的带宽和信道错误率相关。考虑到这个因素,利用带宽一失真代价函数的概念,其核心思想是:在一定的丢包率、信道带宽和传输延迟限制条件下,终端视频的接收质量和传输中所用的带宽不仅和视频信源的率失真性能相关,而且还和信道的错误率(丢包率)以及终端错误恢复技术相关。将其作为衡量视频包是否应当予以重传的准则。在此基础上,采用优化的端对端传输机制,该机制中通过在编码端根据当前信道状况和解码端所采用的错误隐藏算法,预先判定每一部分的出错恢复模式,解码端根据这个模式信息来决定采取ARQ还是错误恢复。这样就有效避免了由于不必要重传而带来的带宽资源浪费,提高了系统带宽使用效率。

[1]  [2]  编 辑:石美君
关键字搜索:视频监控  无线  传输  
相关新闻
每日新闻排行
企业黄页
会议活动