基于局部密度构造相似矩阵的谱聚类算法
[本文摘要]
依据样本数据点分布的局部和全局一致性特征,提出了一种基于局部密度构造相似矩阵的谱聚类算法。首先通过分析样本数据点的分布特性给出了局部密度定义,根据样本点的局部密度对样本点集由密到疏排序,并按照设计的连接策略构建无向图;然后以GN算法思想为参考,给出了一种基于边介数的权值矩阵计算方法,经过数据转换得到谱聚类相似矩阵;最后通过第一个极大本征间隙出现的位置来确定类个数,并利用经典聚类方法对特征向量空间中的数据点进行聚类。通过人工仿真数据集和UCI数据集进行测试,实验结果表明本文谱聚类算法具有较好的顽健性。
相关阅读
热门文章
2021年12月6日
2016年10月28日
2016年10月24日
2016年9月28日
蓝戈沙龙